
N94- 34982

Non-Local Sub-Characteristic Zones of Influence in

Unsteady Interactive Boundary-Layers

A.P. Rothmayer

Department of Aerospace Engineering

Iowa State University

Abstract

The properties of incompressible, unsteady, interactive, boundary layers are examined for the model hyper-

sonic boundary layer of Brown et al (1974,1975) and internal flow past humps or, equivalently, external flow "

past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence

within the viscous sublayer may be a strong function of position within the sublayer and may be strongly in-

fluenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calcula-

tions are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully

viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of

the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain

of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.

1. Introduction

The phenomena of unsteady separation and vortex eruption appear to involve a number of possible high

Reynolds number structures, including: classical boundary layers and singularities (Van-Dommelen & Shen

(1980), Smith & Burggraf (1985)), interactive boundary layers and interactive singularities (Brotherton-Rat-

cliffe & Smith (1987), Smith (1988)), and the introduction of inviscid effects and normal pressure gradients

(Elliott et al (1983)). As noted above, at some point the vortex eruption may pass through a stage in which

viscous-inviscid interaction becomes important, although it is now generally accepted that viscous-inviscid inter-

action does not suppress the ultimate boundary-layer singularity leading to vortex eruption. However, the inter-

active stage may certainly be one segment of the vortex eruption and could be used as a means of controlling the
development of the singularity. This, of course, assumes that marginal states could be found and that some form

of artificially induced interaction could be used to control those marginal states (a suggestion which seems

reasonable given recent computations). It seems clear that computational methods may have to accommodate

the viscous-inviscid interaction at some point in the vortex eruption and such interactions may include artificially

induced interactions if an attempt is made to control the development of the unsteady flow. It is important,

therefore, to understand any factors which may complicate the theory and computation of these interactive

structures - which brings us to the crux of the present study.

In 1985, Smith & Burggraf showed that two-dimensional Tollmien-Schlichting waves can pass into a high

frequency regime with elevated amplitudes in which the wave is predominantly inviscid. Viscous effects are

confined to a sublayer which is governed by classical unsteady boundary layer equations and is driven by the slip

velocity of the inviscid sublayer. As such, the viscous sublayer could admit the Van-Dommelen & Shen (1980)

singularity and burst into the outer layers (see also Elliott et al (1983)). However, with this exception, the viscous

sublayer is decoupled from the rest of the structure. The inviscid sublayer is found to be governed by nonlinear

thin-layer Euler equations and it is this layer which feels the effect of the pressure-displacement interaction. For

hypersonic flows, the predominantly inviscid flow is governed by a modified inviscid Burgers equation

At+ (A- 1)Ax= 0 (1.1)

This equation also governs the unsteady initial value problem for high frequency, large amplitude, short-scaled

waves introduced into the original viscous interactive boundary-layer. Additional implications of eqn. (1.1),

especially as regards finite-time singularities, are addressed by Brotherton-Ratcliffe & Smith (1987) and Smith
(1988).
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FromtheSmith& Burggraf(1985)model,eqn.(1.1),severalinterestingobservationscanbemade.Linear
wavespropagateupstream,finite-timeshocksareinevitableat finitewaveamplitudes,andatsufficientlyhigh
amplitudesthecharacteristicschangedirection.Thissuggeststhatthedifferencingof at leastthestreamwise
convectiveterm uux and pressure gradient, which produce the (A- 1)Ax term, is not a simple matter, but

depends on an interplay between the deviation from a "mean flow profile" and the pressure displacement

interaction.

Most finite difference methods for calculating high Reynolds number unsteady viscous flows tend to rely on

upwinding schemes based on the sign of the streamwise velocity (see for example Keller (1978)). However, the

above observations suggest that traditional differencing techniques may not be appropriate in some unsteady

interactive boundary-layer computations. The present study indicates that in non-parallel, unsteady, hyperson-

ic boundary layers - and in a wide variety of zero-displacement boundary layers - the zones of influence are

determined by a subtle interplay between the convective effects, the pressure-displacement interaction and the

nonparallel (possibly separated) flow - throughout the entire viscous sublayer.

2. Governing Equations

The principal problem to be addressed in this study is the linear unsteady flow superimposed upon an

originally nonlinear steady hypersonic boundary layer. The equations governing a high Reynolds number un-

steady interactive hypersonic boundary layer may be found in a number of studies, including: Brown et al

(1974,1975) and Gajjar & Smith (1985). The governing equations, with the Prandtl transposition, are found to

be: the conservation of mass equation,

Ux+ Vy = 0 (2.1)

and the conservation of streamwise momentum equation,

Ur + UUx + VUr= - Px(X, 7")+ Urr (2.2)

with no-slip boundary conditions at the wall and

U(X,Y,T)-+ Y+F(X)+A(X,T) as Y'-_ oo. (2.3)

The pressure displacement relation in the hypersonic flow of Brown et al (1974,1975) is simply P=-A. Here

F(X) is a prescribed steady hump/indentation shape. For the unsteady internal flow of Smith (1976) and Duck

(1979,1985), as well as the short-scale hump in a Blasius boundary layer (Smith et al (1981)), the P=-A law is

replaced by A=0. The primary issue of interest here is the numerical integration of the above system of equations

using a finite difference procedure. This issue, as will be shown in this study, may not be as simple as it might first

appear.

3. High Frequency Limit

Suppose that a nonlinear steady state solution has been calculated for equations (2.1) through (2.3) - say a

hump induced separation. This may be easily done using a variant of the Davis (1984) alternating direction

explicit (ADE) method (see also Brotherton-Ratcliffe (1987)). A linear unsteady disturbance is superimposed

upon this steady base solution:

[v,vl-[Vo, vol(X,r ÷e ,, 1) (3.1)

Equations (2.1) and (2.2) will be further simplified by letting the time scale become short, or

0 O
--= f2-- (f_ _> 1) . (3.2)
OT Oto

The reader will note that this approach follows very closely the work of Smith & Burggraf (1985), Tutty &
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Cowley(1986),Brotherton-Ratcliffe& Smith(1987)andSmith(1988).Thelowerdeckis foundtobreakup
intotwodistinctregions(I andIII inFig.1).Forpurposesof discussion,andcomparisonwithSmith& Burggraf

(1985), an extra region, II, will be introduced. Region II can be derived as a limit of Region III. The entire

structure is found to be confined to a neighborhood of a point X0 within the lower deck, with

X= X0 + f_-_x0 , (3.3)

and viscous effects are found to be confined to a thin classical Stokes layer, Region I, where Y-- f_-l/2F. The

Stokes layer equations are solved subject to the no-slip boundary conditions at the wall and matching with

Region III. It should be noted that Region I is decoupled from Region III. In Region III we take Y to be O(1) and

the governing equations are found to be

/ilx 0 + O1y = 0 and U1¢0+ U0(kOti,xo + U'0(Y)f, = -/5,x 0 , (3.4a,b)

where Uo(Y) is the local steady velocity profile. Upon integration of equation (3.4b), application of the tangency

boundary condition, and the hypersonic pressure displacement relation, the entire problem is reduced to:
Y

/ilt 0 + V0(r)/,ilx 0 - U'0(Y ) f/ilx0(X 0' _], to)d7 ] -- alx 0 , (3,5)

o

subject to fi, --->fil as Y--* _. Equation (3.5) will form the basis of the numerical calculations presented later in

this study. It may be shown that in the limit as Y becomes large eqn. (3.5) reduces to the linear version of the

Smith & Burggraf (1985) wave equation (1.1), but with a non-trivial displacement effect from region III:

air0 + (Fo + A0 - 1)dl_0 = - d (3.6)

Further details of this structure may be found in Tutty & Cowley (1986) and Rothmayer (1990).

4. Zones of Influence for the Unsteady Linear and Nonlinear Viscous Sublayer

Although the numerical results of this study will be for the high frequency limit of section 3, this approach

may be generalized to other cases. First consider an integrated form of equations (2.1) and (2.2) for the fully

nonlinear problem:

Y

UT + UUx-Ur f Ux(X, rI, T)drl = -Px(X,T) + Uvy , (4.1)
0

where P(X,T) is fixed from the appropriate pressure displacement law and the u-matching condition (2.3).

Linearized problems may be considered, in which case, given an expansion of the form of eqn. (3.1), equation

(4.1) becomes

Y

UT + UoUx + uUox + Vou_..._.r-UorJux(X,_l,T)drl = -px(X,T) + urv , (4.2)
0

subject to no-slip at the wall and u(X, oo, 7-) = a + f as Y---> oo. The high frequency limit of Rothmayer (1990)

results in a parallel flow approximation and neglecting viscous effects in the main portion of the boundary layer.

Equivalently, the high frequency equation is simply equation (4.2) without the underlined terms, for linear

flows, or equation (4.1) without the underlined terms, for nonlinear flows. Equation (4.2) may be evaluated

on the Y grid Yj = (/'- 1)AY using, say, a central difference approximations for ur and urr and a trapezoidal

rule quadrature for the integral in (4.2). As will be shown in section 5, equation (4.2) may be reduced to

the form

Ur + Aux = Bu + g or [till, 0 + A[dllx 0 = 0 (4.3a,b)

when a high frequency approximation is used (see eqn. (3.5), also Rothmayer (1990)) and the underlined
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termsin equation(4.2) areneglected.Thisequationassumesthat a suitablepressuredisplacementrelation
hasbeenusedto relatethepressureto somecombinationof thevelocitieson theverticalgrid(seeRothmayer
(1990)).For example,thehypersonicinteractionlawgivest31 = -glen whereas the prescribed displacement

law (A=0) may be used, in which case the high frequency approximation gives:

N-1

p,= -g + _uI_AY and g(x,t) = f, + (YN + Ao + Fo-1/2_f, (4.4)
j=2

The vector g is given by g = [g...g]r while the matrix A is given in Rothmayer (1990) for the high frequency

limit. The same analysis may be applied to equation (4.1), but now in terms of U = [Ua, ..., UiN]r and the

coefficient matrix A is a function of the solution. Equation (4.3a) is simply an N-dimensional wave equation

which may be solved by standard means using the method of characteristics. Note that the viscous effect as

well as the nonparallel effects (i.e. all underlined terms in (4.2)) only contribute to B and so do not affect

the sub-characteristic analysis. The primary difference between the present study and the standard method

of sub-characteristics is that the characteristics cannot be determined via a local analysis, due to the pressure

displacement interaction P=-A (or the A=0 law). The eigenvalues of the coefficient matrix A can readily be

calculated and satisfy IA-_.il[ = 0, and the eigenvectors are found from Avi = _ivi. The actual method used

in this study for finding the eigenvalues and eigenvectors is a nonlinear Newton-Raphson method (which is

discussed in Rothmayer (1990)). It is not assumed that the eigenvectors have been normalized. Using classical

methods (see John (1971)), a new solution vector u = V6 is defined, where V is an NxN matrix whose columns

are the eigenvectors, i.e. V = [Vl...VN]. Substitution into equation (4.3a) and multiplication by the inverse

of V diagonalizes eqn. (4.3a), and gives

fir+ Afix= l]ti+ g , (4.5)

where 1_ = V-IBV, [_ = V-lg and A is the diagonal eigenvalue matrix A = diag(_q, ...,2N). Equation (4.5) can

be easily integrated along its characteristics for fi, and then the fi can be converted back to u. Direct integration

of (4.3a) requires a differencing formulation which correctly incorporates the diagonalization transformation

u = Vti.

5. A Solution of the Non-Local High-Frequency Characteristic Problem

As in the preceding section, consider a quadrature of the integral in equation (3.5) on the vertical grid

= (j - 1)AY with j=l ..... N. A trapezoidal rule will be employed here, although other quadratures may be used,

in which case:

_i_t,o_ Argot ;,11_o__Zxrgo/,_L_o + got_ AYU0t _1j_o-_,%=0 . (5.1)
/=2

keeping in mind that fil_v = f,. Equation (5.1) is applied at the points j=3 ..... N. At j=2 the summation from

L=2 ..... j-1 is removed from the equation, while at j=l equation (5.1) is replaced by fi_lf0-e 61n_ ° = 0. The

above equations are just the single matrix wave-equation (4.3b) where [till = [tzll ... aan]rand the coeffi-

cient matrix A is given in Rothmayer (1990). The characteristic slopes, At, are the eigenvalues of A, and satisfy

IA-Zal = o, where 2 = OXo/dto • The Riemann invariant Ft associated with the At eigenvalue satisfies (see Cho-

rin & Marsden (1979)):
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In general there are N eigenvalues, and it turns out that the first N-1 are roughly the slope of the Uo velocity at a

particular j gridpoint (for the particular solution being calculated in this study). The last eigenvalue, _N, does not

appear to have any simply determined value and must be found via numerical computation. These eigenvalues

have associated with them the Fj Riemann invariants, each of which is constant along the characteristic with

slope _.j. Therefore at each (Xo,t0,Y) gridpoint a system of N equations in the N zilj's needs to be solved, namely

where (Fj)0 's are the Riemann invariants evaluated along the initial data plane. The equations (5.3) may be

inverted to give:

-1

=L0 ,,j
This is effectively the diagonalization process of equation (4.5). Equation (5.4) gives the dependence of each

tiij on the Riemann invariant Fj associated with the ;lj eigenvalue. Therefore the inverse of the Jacobian matrix

of the Riemann invariants gives the domain of dependence of the streamwise velocity at each jth gridpoint in

terms of the j characteristics with slope Jlj, providing that the Riemann invariant multiplying a given row element

of the inverse is non-zero. In the general case, there is no reason to expect the domains of dependence to be
simple.

For purposes of computation, an idealized flow will be considered. The velocity field is assumed to take the
form:

U0(g) = Y+ A(I - e -r) , (5.5)

where A is taken as an independent parameter, in lieu of A0+F. The wall shear stress is given by

rw = U'o(O) = I + A, indicating that the flow is attached for A>-I and separated for A<-I. The case A=0 gives an

undisturbed sublayer. Velocity profiles for various values of A are shown in Figs. 2 through 4, along with the

eigenvalue and eigenvector calculations. In addition, a new function, ®i, will be defined, which is the product of

a row element in the inverse eigenvector matrix and the corresponding element of the Riemann invariant vector:

OF -1

®i = [-_L]_ [Fi]o (5.6)

The results of these calculations are shown in Figs. 5 through 8, assuming constant perturbation velocities on

the initial data plane. The results for A=0 are in agreement with the linear results of the Smith & Burggraf (1985)

study. The solution at any vertical point in the grid depends only on the j--N eigenvalue which has slope -1. The

results of the above calculations for an accelerated flow are shown in Figs. 6 and 7. Consider the schematic

interpretation of Figs. 5 through 7, shown in Fig. 8. This figure is a qualitative interpretation only and is not

meant to convey accurate quantitative data. At low amplitudes (i.e. A near 0) all of the characteristics point

downstream with slope -1. As the flow is accelerated (i.e. A increasing) a region of dependence begins to

emerge for small values of j, and the slope of the downstream-directed characteristic begins to decrease. A
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typicalcase,sayA=5,nowhasthej=Neigenvaluecompetingwiththeeigenvalueswhichareapproximatelythe
velocitiesnearthebottomoftheboundarylayer.Notethatthisonlyoccursintheouterportionof theboundary
layer(i.e.forj large).Theeigenvaluesassociatedwithsmallj's havecharacteristicswhichpointupstreamandso
thetendencyin theouterportionof theboundarylayeris for theupstreamdirectedcharacteristicsto begin
competingwith,andeventuallyovertaking,thedownstreamdirectedcharacteristic.Theoverallpictureisthat
thecharacteristicsin theouterportionof thesublayerappeartochangedirectionfor increasingA, whereasthe
characteristicsinthelowerportionof thesublayerdonot.Thismeansthatthecharacteristicsarenotpointingin
thesamedirectionthroughoutthesublayerwhenthechangein thedirectionof thecharacteristicsdoesoccur,
but varywithverticalposition.

7. Conclusion and Implications for Finite Difference Computations

In this study it has been shown that the sub-characteristics in an unsteady interactive viscous flow are not

simply determined by the convective velocity, but rather are fixed by an interplay between the convective terms,

the pressure displacement interaction, and the nonparallel base flow. In addition, the sub-characteristics may

vary throughout the entire viscous sublayer and may possess a complex structure. These results seem to be in

accord with the work of Smith & Burggraf (1985) on nonlinear hypersonic waves, which suggests that the

characteristics will change direction at sufficiently large disturbance amplitude. Is it worthwhile to perform the

domain of dependence calculation before proceeding to the finite difference solution.'? This of course depends

on the results for a particular case. A simple differencing scheme may correctly capture the physics of the

problem in question. However, the present study indicates that it is possible for an unsteady flow to possess

complicated domains of dependence, and hence to require complex differencing schemes. It is anticipated that

problems related to incorrectly modeling the domains of dependence in a finite-difference method will manifest
themselves either as a CFL (Courant-Friedrichs-Lewy) condition or as spurious oscillations in the solution.
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Figure 1, Asymptotic structure for a high frequency
unsteady linear disturbance in a nonparallel viscous

sublayer.
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Figure 2. Eigenvalues, eigenvectors and the velocity

profile for A=0 and N=51. ej is the eigenvector
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Figure 3. Eigenvalues, eigenvectors and the velocity
profile for a model separated flow (A=-5, N=51).

Figure 4. Eigenvalues, eigenvectors and the velocity
profile for a model accelerated flow (A=5, N=51).
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